Ортезы стопы: эволюция взглядов (часть 2) — Плоскостопие
Назад

5. Нейромышечные теории эффективности ортезов стопы

НАЧАЛО: Часть 1 

В последние годы в ортопедии ряда стран активно развивается неврологическое направление, называемое «Сенсомоторика». В основе этого направления лежит коррекция статики и динамики тела путём использования специальных, «афферентативных» стелек с набором сменных пелотов. Эти пелоты предназначены для целенаправленного усиления афферентации с подошвенной зоны стопы (Yahrling L, 2000, 2003; Kimmeskamp S., Milan T.L., 2002; Natrup J. и др., 2004).

По ранее доминировавшей биомеханической теории М. Рута с соавт. (1964) предполагалось, что ортопедические стельки, контролируя двигательный паттерн стопы — нижней конечности, чисто механически ограничивают избыточность движений и таким образом ликвидируют перегрузки миофасциальных структур опорно-двигательного аппарата.

Принципиально другой образ мышления используется для объяснения эффективности афферентативных стелек. Предполагается (G. Pfaff, 2004), что избыточность движений стопы — нижней конечности возникает в результате недостаточного мышечного контроля (недостаточный невральный стимул, мышечный дисбаланс, нарушения координации и т. п.). При этом считается, что за счёт правильно подобранных пелотов стелек и дополнительной проприрецептивной стимуляции происходит активация мышечного контроля, что обеспечивает поддержание оптимальной траектории движения, минимизацию энергозатрат и ликвидацию избыточного напряжения опорно-двигательных структур нижних конечностей. В рамках сенсомоторного направления и на основании результатов исследований, полученных за последние годы, B. Nigg (2001) предложил новую концепцию, объясняющую эффективность работы ортезов стопы.

Согласно этой модели:
— Силы, воздействующие на стопу во время первых мгновений опоры, являются входным невральным сигналом.
— Реагируя на эти сигналы, локомоторная система соответствующим образом адаптирует свою мышечную активность (происходит преактивация мышц, направленная на организацию демпфирования последующей вибрации мягких тканей в период приземления и опоры).
— Цель этой адаптации — сохранить предпочтительную траекторию движения для выполнения конкретной двигательной задачи.
— Если стороннее вмешательство (например, ортез стопы) поддерживает предпочтительную траекторию движения, уровень необходимой мышечной активности может быть снижен: происходит экономизация энергозатрат.

По этой концепции, оптимальная обувь и/или ортезы стопы уменьшают избыточную мышечную активность. Следовательно, обувь и ортезы стопы могут влиять на общие энергозатраты, утомление, комфортность и работоспособность. По некоторым данным, субъективное чувство «комфортности» можно считать интегральным показателем эффективности внешнего «вмешательства». Так, измерения потребления кислорода у 10 пациентов, бегавших на тредбане в двух парах обуви — «наименее удобной» и «наиболее удобной» (выбранных произвольно из 5 предложенных пар) — показали значимую разницу: на поддержание одной и той же скорости передвижения бег в «комфортной» обуви требовал меньшего потребления кислорода (B. Nigg, 2001).

Известно, что в кожных ареалах подошвы стопы расположены механо- и терморецепторы, которые регистрируют давление и температуру. Они объединяются под понятием «ноцицепторы» и отвечают за поверхностную чувствительность. Им в противоположность, глубокая чувствительность включает сенсорику в мышечно-связочном аппарате и суставах стопы — нижней конечности. Мышечные веретёна, сухожильный аппарат Гольджи и рецепторы суставов обеспечивают необходимую афферентацию для поддержания прямостояния/передвижения. Они поставляют информацию о положении суставов, а также о степени напряжения мышц и сухожилий. Все эти образования объединяются под понятием «проприорецепция».

Существуют различные конструкции стелек, предназначенных для усиления афферентации. В зависимости от высоты и расположения пелотов, одни из них больше задействуют глубокую чувствительность, другие — поверхностную. Однако все стельки, применяемые в рамках сенсомоторного направления, не имеют цель изменить архитектуру стопы, обеспечить коррекцию Рис10деформаций и механический контроль движений, как это принято для традиционныхортопедических стелек. Для их изготовления используются гораздо более мягкие материалы. При этом высота корригирующих пелотов таких стелек, как правило, не превышает 2–4 мм. Тем не менее, при всей «деликатности» конструкций подобных стелек их экспериментальное и клиническое использование позволило получить весьма впечатляющие результаты.

За последние годы на конкретных клинических примерах было показано заметное позитивное влияние усиливающих афферентацию стелек при лечении детей со спастическим параличом (Woltring St., 2003; Yahrling L, 2000). Так, Hafkemeyer с соавт. (2003) исследовал влияние подобных стелек на параметры походки у детей с ДЦП. В отдельных случаях были установлены позитивные эффекты, такие как увеличение контактной поверхности стопы при опоре.

В этой связи интересны работы, изучавшие вклад афферентаций с подошвенной поверхности стопы на статику тела. На пациентах-диабетиках с невропатией стоп было показано (Simoneau G.G. и др., 1994) значительное снижение постурального контроля. В согласии с этими данными, при экспериментальном охлаждении (замораживании) стоп здоровых испытуемых было отмечено значительное увеличение постуральных колебаний тела (Eils E. и др., 2003).

В исследовании с использованием 2- и 3-миллиметровых вкладышей, располагаемых в различных зонах подошвы (Natrup J. и др., 2004), было показано, что, во-первых, для коррекции положения позвоночного столба наиболее референтны 3-миллиметровые вкладыши. Во-вторых — место расположения пелотов радикальным образом влияло на ответную реакцию. Размещение таких вкладышей под медиальным краем стопы вызывало экстензионную реакцию постуральной мускулатуры спины и тенденцию к выпрямлению сагиттальных изгибов позвоночного столба. Напротив, латеральное расположение вкладышей приводило к изменениям позиции тела во фронтальной плоскости.

В этих, как и во многих других сходных зарубежных исследованиях для регистрации и оценки изменений осанки была использована система трёхмерной оптико-компьютер-ной диагностики (фотографирование спины пациента в лучах поляризованного света с последующей компьютерной обработкой снимка и получением топографической картины спины и её реперных точек во фронтальной и сагиттальной плоскостях). Рис12В России аналогичная диагностическая методика носит название «Метод оптической топографии». С помощью этой методики в наших пилотных исследованиях (Бейкрофт Ч.М., Нечаев В.И., 2001) было показано, что экспериментальное изменение позиции пятки (медиальный либо латеральный 5-градусный клин под одной пяткой) в положении «стоя» диаметрально противоположно меняет тонус постуральной мускулатуры спины, угол наклона таза и степень лордозирования поясничного отдела позвоночника.

Сходные результаты по влиянию небольших по величине медиальных пелотов на выраженность сагиттальных изгибов позвоночного столба были получены (Rothbart B., 2000, 2002) при коррекции часто встречающейся деформации «дорзифлексия I луча». По мнению этого автора, фиксированная элевация I луча (так же как и варус-девиация переднего отдела стопы) в положении «стоя» ведёт к «постуральному коллапсу»: чрезмерному усилению физиологических изгибов позвоночного столба и «спадению» тела в сагиттальной плоскости. Корригирующие пелоты величиной 2–5 мм (приблизительно в 30% от имеющегося дефицита опоры), располагаемые под медиальным краем переднего и среднего отделов стопы, стабилизировали положение стопы, выравнивали позвоночный столб и на 70% снижали гиперпронацию стопы при ходьбе («правило 30/70»).

Результаты вышеприведённых исследований, как и другие многочисленные данные, однозначно указывают на то, что главным фактором, определяющим эффективность влияния стелек на осанку и паттерн походки, является место расположения корригирующего пелота на подошвенной зоне стопы. При этом толщина и степень жёсткости пелота, видимо, не столь существенны, как считалось ранее. Размещение пелота под определённой зоной стопы ведёт к строго соответствующим изменениям в афферентации, адаптивным перестройкам осанки и походки человека. Так, при дорзифлексии I луча, по мнению B. Rothbart’а (2002), в системе «стопа — мозг» клин-пелот под I лучом постоянно напоминает мозгу, что «опора теперь здесь, выше, чем ранее». Это способствует постепенному изменению статики тела и двигательного паттерна, что и приводит к снижению гиперпронации стопы при передвижении и выравниванию позвоночного столба. Данные рассуждения автора полностью укладываются в сенсомоторную концепцию эффективности ортезов стопы. Однако есть и другие доводы, объясняющие эффективность усиливающих афферентацию стелек.

6. Нейробиомеханический подход.

Рассматривая сенсомоторную концепцию, нельзя, однако, предположить, что одна, даже очень специальная стелька задействует исключительно только поверхностную или же только глубокую чувствительность. С другой стороны, даже при вышеуказанной высоте пелотов в 2–4 мм стельки чисто механически должны влиять на положение стопы. Миофасциальные структуры «спиральной линии» тела (Т. В. Майерс, 2007) напрямую связывают стопу с вышележащей постуральной мускулатурой позвоночного столба, включая мышцы и фасции шеи. Следовательно, любые, даже минимальные изменения позиции стопы, как в статике, так и в динамике, будут менять натяжение миофасциальных структур, спиральной линии, влияя на осанку и походку человека. Опытные подиатры утверждают, что боль в стопе — нижней конечности можно убрать клином величиной со спичку. Весь фокус заключается в том, куда подложить эту «спичку». В пользу потенциальной возможности существенного влияния стелек на биомеханику стопы — нижней конечности косвенно указывают и результаты ранее уже цитировавшихся исследований, изучавших воздействие ортезов стопы на контроль движений (Segesser B., Ruepp R., Nigg B.M., 1978; Nigg B.M. и др., 1986, 1987, 1998; Stacoff A. и др., 2000). Отмечая под влиянием ортезов уменьшение пронации стопы в среднем всего на 2–4 °, авторы единодушно подчёркивают несистематичность и сугубую индивидуальность получаемых результатов. Это означает, что у одних испытуемых позитивные изменения были минимальными или же вообще отсутствовали, у других — гораздо больше, чем в среднем по группе. В цитируемых работах сведения о конструктивных формах использованных стелек, степени их жёсткости, расположении и высоте пелотов и т. п. характеристиках весьма скудные и не позволяют сделать вывод об индивидуальной аккомодированности к особенностям стоп испытуемых. Отсюда можно предположить, что в тех случаях, когда конструктивные формы ортезов случайно совпадали с особенностями строения и функции стоп испытуемых, наблюдался существенный эффект коррекции и — наоборот. При этом регистрируемая эффективность ортеза, вероятно, могла аддитивно складываться как из чисто механического воздействия ортеза, так и из усиления афферентации (за счёт адекватного расположения корригирующих пелотов).

Таким образом, вышеизложенные данные и косвенные результаты ряда исследований свидетельствуют в пользу того, что, видимо, только индивидуально изготовленные стельки, учитывающие особенности строения и, главное, функции опорно-двигательного аппарата индивида, могут вызывать выраженные позитивные изменения паттерна осанки и походки человека. Напротив, недавно было показано (Fusco R., Fusco M.A., Ambrosone M., 2004), что при чисто механическом подходе к коррекции «короткой ноги» (без функционального тестирования, только по результатам рентгеновских снимков в положении «стоя») с помощью 5-миллиметровых косков под пятку наблюдалось усиление торзионных деформаций таза и позвоночного столба.

Таким образом, рассматривая вопрос путей позитивного влияния ортезов стопы, видимо, следует учитывать как чисто биомеханическое их влияние, так и афферентативное воздействие на паттерн походки и осанки пациента. Это означает, что любые «вкладыши» в обувь и корригирующие пелоты могут влиять на положение суставов, степень напряжения сухожилий, мышц, но одновременно индуцировать дополнительный проприорецептивный вклад в систему управления статикой и динамикой нашего тела. В ЦНС происходит обработка всей входящей афферентативной информации и выработка более адекватной ситуативной скелетно-мышечной адаптации. Вероятно, в результате использования «идеальных» ортезов возникает дополнительная адаптивная активация или ингибирование постуральной и фазической мускулатуры тела направленная на оптимизацию позы и двигательного стереотипа индивида.

В настоящее время наиболее передовые системы ортезирования стопы включают в себя как элементы подиатрической концепции М. Рута (коррекция возможных функциональных несоосностей сегментов нижних конечностей), так и последних научных разработок Б. Нигга в области неврального контроля движений (нейромоторная фасцилятация — «облегчение» проприорецептивного «входа»). Одной из таких систем, отражающих нейробиомеханический подход, является Система Формтотикс™, предложенная Ч. М. Бейкрофтом (Н. Зеландия, 2006). Не исключая возможности чисто биомеханической коррекции движений ортезами стопы, тем не менее, концептуальный подход системы Формтотикс принципиально отличается от подиатрической модели «контроля движений» М. Рута.

Подиатрическая модель

Формтотикс модель

Анатомические аномалии стопы

Аномальная среда (экология)

Структурные деформации

Дисфункции нормальных структур

Коррекция структурных деформаций

Улучшение функций

Метрологические измерения

Функциональные тесты

«Теоретический» ортез

«Клинический» ортез

Контроль движений

Биомеханическая и сенсомоторная адаптация

Ригидные материалы

Мягкие материалы

Постоянное использование

Терапевтическое использование

Некомфортность

Повышенная комфортность

Врач определяет форму ортеза

Пациент создаёт форму ортеза

Данная система состоит из 6 простых диагностических (визуальных и функциональных) тестов и 6 шагов по изготовлению и коррекции индивидуальных ортезов стопы. Для изготовления ортезов Формтотикс используются типовые заготовки стелек различной плотности (жёсткости) из вспененного ультралона производства фирмы FOOT SCIENCE INTERNATIONAL (Н. Зеландия). После подбора соответствующей заготовки, её разогрева (5–10 мин) и формовки «прямо на ноге пациента» в нейтральной позиции стопы, ортезы носятся пациентов в течение 2–3 недель. Затем, во время второго посещения, при необходимости производится их дополнительная коррекция функциональными клиньями, размещаемыми в различных зонах «базиса» нижней стороны стелек (согласно результатам функционального тестирования). Гарантийный срок эксплуатации стелек Формтотикс — 2 года.

Исход      стельки  стельки+косок

По последним нашим наблюдениям (неопубликованные данные, 2007) уже сами по себе заготовки стелек, даже без индивидуальной подгонки позитивно влияют на асимметричность тонуса постуральной мускулатуры спины и наклон таза (см. рис.). Возможное объяснение этому факту — неравномерное сжатие губчатого материала стельки под различными зонами подошвенной поверхности стопы. Наиболее нагруженные участки стопы в большей степени сжимают материал стельки, и — наоборот. Тем самым в стельке образуются естественные «выборки» и «выкладки», которые стабилизируют стопу и способствуют равномерному распределению давления на подошвенные рецепторы стопы. При термоформовке эти особенности распределения давления и индивидуальные изгибы стопы «отпечатываются» в готовой стельке. В дальнейшем стабилизация стопы усиливается за счёт наклеивания функциональных клиньев. В результатеРис17 меняется позиция стопы и, вероятно, характер проприорецептивной составляющей в регуляции постуральной мускулатуры.

В итоге возникают заметные позитивные сдвиги в статике и динамике тела. Так, согласно нашим наблюдениям (исследования походки на системе «Диаслед»), нормализуются «крылья бабочки», отражающие смещения центра тяжести тела во время ходьбы. Вышеприведённые результаты многочисленных работ по эффективности ортезов стопы поддерживают подобные предположения.

Заключение

Проведённый анализ литературы показывает, что эффективность ортезов стопы — это проблема скорее нейроортопедическая, чем чисто ортопедическая. Очевидно, что чисто «механическое» влияние ортезов на «контроль движений» и соосность сегментов нижних конечностей менее значимо, чем было принято считать многие годы. Следовательно, эффективные стопы могут изготавливаться из более мягких материалов, чем это делалось ранее. Жёсткая и мощная «поддержка» медиального продольного свода совершенно необязательна и даже вредна. Скорее всего, сенсомоторное действие ортезов стопы более существенно, чем чисто механическое. Главным фактором, определяющим эффективность влияния стелек на походку и осанку пациента, является место расположения корригирующего пелота. Небольшие по высоте (2–4 мм) мягкие и полуригидные пелоты могут оказывать выраженное влияние на осанку пациента. Степень комфортности ортезов стопы и обуви коррелирует с их механической эффективностью: комфортные ортезы способствуют экономизации движений и поддержанию работоспособности.

Проведённый анализ показывает, что проблема эффективности ортезов стопы требует дальнейших исследований, а ряд теоретических предположений и практических выводов нуждается в экспериментальной поддержке.

Назад